Instituto Tecnológico de Buenos Aires

+

+

About ITBA

ITBA is the first and leading private University specialized in teaching and research in Engineering, Technology and Management in Argentina. Since 1959, the Instituto Tecnológico de Buenos Aires has been renowned for its academic excellence and for its commitment to generating and transferring innovative knowledge to society.

X

Undergraduate level

Bachelor in Business and Social Analytics Bachelor in Business Administration Bioengineering Electronic Engineering Engineering Mechanical Engineering Naval Engineering Chemical Engineering

Graduate level

Master in Data Science Master in Sustainable Energy Development Master in Strategic and Technological Management Master in Energy and Environment ITBA-KIT Master in Environmental Management Master in Management & Analytics Master in Policy Analysis Master in Projects and Supply Chain Management Data Science Specialization Specialization in the Economy of Oil and Natural Gas Specialization in Oil and Natural Gas Production Specialization in Well Completion at unconventional reservoirs

Doctoral level

Ph.D. in Engineering Ph.D. in Software Engineering Ph.D. In Management of Systemic Innovation

Z

/itbauniversidad

🍠 @itba

O @itbauniversidad

www.itba.edu.ar

| 02

Bachelor in **Business** and **Social Analytics**

What does a Bachelor in Business and Social Analytics do?

The world generates data at increasing speeds and magnitudes. The Bachelor in Business and Social Analytics trains students to analyze and interpret data to make decisions that positively impact their organizations.

Bachelors in Business and Social Analytics will understand economic, social, and cultural trends to define strategies, generate solutions, create proposals, and take decisions that optimize businesses and improve society's quality of life.

COURSE

SUBJECT		
FIRST YEAR		
Computing Tools	Discrete Mathematics	
Introduction to Business Administration	Statistics	
Mathematical Analysis	Learning methodology	
Algebra	Global Historical Overview	
General Computer Science		

SECOND YEAR **Microeconomics** Macroeconomics Philosophy Data Management Data Structures and Programming Information Display **Applied Mathematics** Elective subject- General Training Area **Business Ethics** English I **Applied Statistics I**

Х

Bachelor in Business and Social Analytics

Г

L

٦

THIRD	YEAR
-------	------

Public and Private Law	Operations Research II
Organizational Structures	Elective subject Business
Applied Statistics II	Elective subject Social
Information Life Cycle Management	Elective subject Computer Science
Descriptive Analytics	Elective subject Analytics
Project I	Simulation
Predictive Analytics	Final Project- Analytics
Operations Research I	English II

 $^{+}$

Bachelor in Business Administration

Graduates in Business Administration from ITBA have a comprehensive vision of the business world, anchored in the potential of technology that enables them to create their own business, as well as to lead multinational or family companies.

Their training allows them to innovate, optimize and create new business models, staying ahead of the digital world and market demands, and have the skills to adapt to a constantly evolving environment.

COURSE

SUBJECT		
FIRST YEAR		
Introduction to Business Administration	Global Historical Overview	
Algebra	Philosophy	
Accounting Systems	Mathematical Analysis	
General Computer Science	Managerial Accounting	
Introduction to Information Technology		
SECOND	YEAR	
Microeconomics	Organizational Management based on	
Statistics	business processes	
Marketing	Public and Private Law I	
Financial Management	Presentation techniques	
Data Management	Computational Functional Analysis	
Macroeconomics	Elective subjects- Management	
Epistemology and heuristics		

Bachelor in Business Administration

THIRD YEAR	
Organizational Structures	Human Resources Management
Decision-making	Sales Management
Taxes and decision-making I	Taxes and decision-making II
Digital Solutions Architecture	Integrated Business Management Systems I
Elective subjects- Management	Elective subjects- Management
Elective subjects- System and Technology	Elective subjects- System and Technology
Operational Management	

FOURTH YEAR

Business Strategy	Elective subjects- Management
Business Architecture	Elective subjects- System and Technology
Elective subjects- Management	English 1*
Elective subjects- System and Technology	English 2*
Final Project**	Technology certifications:*

-*: The credits for these subjects are given by the certifications defined bellow. -**: The Final Project subject will be passed according to one of the following options:

SUBJECT

Business Diagnosis and Action Plan (Final assignment)

Business Diagnosis and Implementation Systems Plan (Final assignment)

Project on products or services launching (Final assignment)

Bioengineering_

What does a Bioengineer do?

Bioengineering graduates from ITBA have solid knowledge in molecular, cellular, anatomy and physiologic, mechanic biology, and electronic and computing technologies. These tools enable them to face the scientific challenges of the future, applying technology to medicine and biology.

Professionals in Bioengineering create or modify products, systems, and processes for specific applications and participate in the management and administration of technology in hospitals and clinics.

-	-		-	
		D	_	15
		 •	_	

+

SUBJECT		
FIRST YEAR		
Chemistry I	Chemistry II	
Representation Systems	General Computer Science	
Mathematics I	Mathematics II	
Linear Algebra	Physics I	
General Training I	Learning methodology	
SECON) YEAR	
Data Structures and Programming	Histology and Anatomy	
Mathematics III	Mathematics IV	
Physics II	Physics III	
Molecular and Cellular Biology	Probability and Statistics	
THIRD YEAR		
Physiology	Numerical Methods	
Physics IV	Electrotechnics	
Mathematics V	Signals and Systems	

Х

Bioengineering

Bio-materials	Biomechanics	
Analogical and Digital Electronics	Quantitative Physiology -	
FOURTH YEAR		
Biomedical Instrumentation I	Biomedical Instrumentation II	
Structural and Computational Biomedicine	Biomedical Image Processing	
Biomedical Signal Processing	Bioinformatics	
Control Systems	Biosensors	
Law for Engineers	Industrial Organization	
FIFTH YEAR		
Artificial Organs	Elective subjects	
Medical Informatics	Hospital Engineering	
Rehabilitation Engineering	Economics for Engineers	
Course Final Project	Environmental and Occupational Safety	
General Training II	Elective subjects	

Supervised Professional Practice

Professional cycle

×

Additional requirements:

Two levels of English required.

+

Electronic Engineering

COURSE

+

What does an Electronics Engineer do?

Electronics Engineers from ITBA are trained in basic sciences and in the disciplines of Electricity and Electronics with the objective of studying, constructing, and maintaining electronic and signal processing equipment, systems, and devices.

They can, for instance, make mobile phones smarter, make medical equipment more precise, or store and control energy resources more efficiently.

SUBJECT	
FI	RST YEAR
Introduction to Computing	Programming I
Representation Systems	Mathematics II
Mathematics I	Discrete Mathematics
Linear Algebra	Physics I
Learning methodology	General Training I
SE	COND YEAR
Chemistry I	Technology of Electronic Materials
Algorithms and Data Structure	Mathematics IV
Mathematics III	Probability and Statistics
Physics II	Physics III
ТН	IRD YEAR
Industrial Organization	Physics IV
Electrotechnics I	Numerical Methods
Electronic Physics	Mathematics V

Circuits Theory	Electronics Laboratory	
Electronics I	Spanish	
Electronics III	English I	
FOURT	HYEAR	
Environmental and Occupational Safety	Information Transmission	
Signal and Digital Systems Analysis	Control Systems	
Electronics II	Microprocessors Laboratory	
Random Signals		
FOURTH YEAR: <u>TELECOMMU</u>	NICATIONS ORIENTATION	
Electromagnetism	Telecommunications elective subject	
FOURTH YEAR: MECHATRON	ICS/CONTROL ORIENTATION	
Economics for Engineers	Mechatronics/Control elective subject	
FOURTH YEAR: SIGNAL PROCESSING ORIENTATION		
Adaptive signal processing	Signal processing elective subject	
FIFTH YEAR: TELECOMMUN	HICATIONS ORIENTATION +	
Electronics V	Antennas and Radio wave propagation	
Power electronics	Digital Networks	
Microwaves	Economics for Engineers	
Electronic equipment design	Law for Engineers	
Digital communications	English II	
General Training II	Professional Practice	
FIFTH YEAR: MECHATRONI	ICS/CONTROL ORIENTATION	
Electronics IV	Sensors and actuators	

X

/,

+

Automated control	English II
Applied Mechatronics	Electromagnetism
Law for Engineers	Professional practice

++

FIFTH YEAR: SIGNAL PROCESSING ORIENTATION

Electronics V	Voice processing
Power electronics	Image Processing
Neural networks	DSP-fpga laboratory
Electronic equipment design	Economics for Engineers
Electromagnetism	Law for Engineers
Digital communications	English II

Petroleum Engineering

What does a Petroleum Engineer do?

Petroleum engineers generate the fuel that moves our transportation systems and keeps industries running.

They boost the manufacture of thousands of products, ranging from medicines to plastics, and even cosmetics. They have the skills to design and supervise drilling operations, and they can also develop processes and equipment to optimize the production of oil and gas.

-	-		_	-
		гι		
			IR	
-	<u> </u>	<u> </u>		-

Electrotechnics

+

SUBJECT		
FIRST YEAR		
Chemistry I	Chemistry II	
Representation Systems	General Computer Science	
Mathematics I	Mathematics II	
Linear Algebra	Physics I	
General Training I	Learning methodology	
SECOND YEAR		
Statics and Strength of Materials	Mathematics IV	
Basic programming	Physics III	
Mathematics III	General Mechanics	
Physics II	Physical Metallurgy I	
Probability and Statistics		
THIRD YEAR		
Organic Chemistry for Petroleum	Fluid Mechanics	

Geology for Engineers

Х

++

+ +

Physics IV	Fluid reservoirs and Petrophysics	
Electrical installations and Machinery	Numerical Methods	
Thermodynamics	English I	
Oil Drilling I		
FOURTH YEAR		
Industrial Organization	Enhanced Oil Recovery	
Fieldwork I	Reservoir Geophysics	
Oil Drilling II	Oil and Gas Well Completion and	
Reservoir Engineering	Workover	
Pressure Transient Analysis	Oil Production	
Well logging	Economics for Engineers	
Petroleum Geology		
FIFTH YEAR		
Environmental and Occupational Safety	Natural Gasoline and Gas	
Surface Facilities Project	Business Development	
Fieldwork II	General Training III	
Reservoir development	English III	
Reservoir simulation	Elective subjects	
Law for Engineers	Professional practice	
General Training II		
Oil industrialization and Economic Development		

×

- Industrial Engineering

Instituto Tecnológico de Buenos Aires

What does an Industrial Engineer do?

Industrial Engineers analyze the links between the parties of an organization and relate them with the general scenario to guarantee the best results.

The comprehensive overview of such Engineers outstands in various situations like shortening the waiting times at the bank, managing to forecast the sales of a company, or even making a marketing campaign more effective.

The analysis and creativity allow these Engineers to find the best solution, positively transform the technological, economic, environmental, and social surroundings.

COURSE

+

÷

SUBJECT		
FIR	ST YEAR	
Chemistry I	Chemistry II	
Representation Systems	Basic programming	
Mathematics I	Mathematics II	
Linear Algebra	Physics I	
General Computer Science	General Training I	
SECO)ND YEAR	
Statics and Strength of materials	Mathematics IV	
Mathematics III	Physics III	
Probability	Thermodynamics	
Physics II	Mechanics and Mechanisms	
Learning methodology	Materials and Processes	
Numerical Methods		

| 14

++

+

< < <

itba
Instituto Tecnológico de Buenos Aires

Production Organization IIndustrial CostsPhysics IVThermal MachinesFluid MechanicsElectrical MachinesApplied Statistics IApplied Statistics IIElectrotechnicsSystems and ModelsProduction Organization IIEnglish IElectronics and InstrumentationFOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	THIRD YEAR		
Physics IVThermal MachinesFluid MechanicsElectrical MachinesApplied Statistics IApplied Statistics IIApplied Statistics ISystems and ModelsElectrotechnicsSystems and ModelsProduction Organization IIEnglish IElectronics and InstrumentationFOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Production Organization I	Industrial Costs	
Fluid MechanicsElectrical MachinesApplied Statistics IApplied Statistics IIElectrotechnicsSystems and ModelsProduction Organization IIEnglish IElectronics and InstrumentationEnglish IFOURTH YEARProduction Processes and TechnologiesOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElectrics InstallationsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Physics IV	Thermal Machines	
Applied Statistics IApplied Statistics IIElectrotechnicsSystems and ModelsProduction Organization IIEnglish IElectronics and InstrumentationFOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Fluid Mechanics	Electrical Machines	
ElectrotechnicsSystems and ModelsProduction Organization IIEnglish IElectronics and InstrumentationFOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingOperations ResearchLogisticsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial Facilities	Applied Statistics I	Applied Statistics II	
Production Organization IIEnglish IElectronics and InstrumentationFOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Electrotechnics	Systems and Models	
Electronics and Instrumentation FOURTH YEAR Production Processes and Technologies Operations Research II Operations Research Marketing Information Systems Economics Budget and Control Logistics Thermal Installations Quality Assurance Electrical Installations Technology Updates Seminars Electrice subjects Training for Entrepreneurs Planning and Evaluation of Projects Training for Entrepreneurs Strategic Planning Project Management Simulation Law for Engineers Industrial Engineering Final Project Industrial Facilities Environmental Management General Training III	Production Organization II	English I	
FOURTH YEARProduction Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElectrive subjectsTraining for EntrepreneursPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Electronics and Instrumentation		
Production Processes and TechnologiesOperations Research IIOperations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	FOURTH YEAR		
Operations ResearchMarketingInformation SystemsEconomicsBudget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Production Processes and Technologies	Operations Research II	
Information Systems Economics Budget and Control Logistics Thermal Installations Quality Assurance Electrical Installations Technology Updates Seminars Elective subjects FIFTH YEAR Planning and Evaluation of Projects Training for Entrepreneurs Strategic Planning Project Management Simulation Law for Engineers Industrial Engineering Final Project Industrial Facilities Environmental Management General Training III	Operations Research	Marketing	
Budget and ControlLogisticsThermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for Engineersndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Information Systems	Economics	
Thermal InstallationsQuality AssuranceElectrical InstallationsTechnology Updates SeminarsElective subjectsFIFTH YEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Budget and Control	Logistics	
Electrical Installations Technology Updates Seminars Elective subjects FIFTH YEAR Planning and Evaluation of Projects Training for Entrepreneurs Strategic Planning Project Management Simulation Law for Engineers Industrial Engineering Final Project Industrial Facilities Environmental Management General Training III	Thermal Installations	Quality Assurance	
Elective subjects FIFTH YEAR Planning and Evaluation of Projects Training for Entrepreneurs Strategic Planning Project Management Simulation Law for Engineers Industrial Engineering Final Project Industrial Facilities Environmental Management General Training III	Electrical Installations	Technology Updates Seminars	
FIFTHYEARPlanning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Elective subjects		
Planning and Evaluation of ProjectsTraining for EntrepreneursStrategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	FIFTH YEAR		
Strategic PlanningProject ManagementSimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Planning and Evaluation of Projects	Training for Entrepreneurs	
SimulationLaw for EngineersIndustrial Engineering Final ProjectIndustrial FacilitiesEnvironmental ManagementGeneral Training III	Strategic Planning	Project Management	
Industrial Engineering Final Project Industrial Facilities Environmental Management General Training III	Simulation	Law for Engineers	
Environmental Management General Training III	Industrial Engineering Final Project	Industrial Facilities	
	Environmental Management	General Training III	

OTHER REQUIREMENTS

Professional practice

Two levels of English

| 15

×

What does a Computer Engineer do?

Engineering

Computer Engineers transform and manage information through the design, development, and implementation of technology. They lead technology innovation in organizations.

/ /

Their training allows them to intervene in the analysis of data and the different stages of a computer project. Also, they are skilled in the images, videos, and texts as data sources in the development of algorithms for several applications focused on confidentiality, integrity, and availability of information.

COURSE

+

X

× Computer

SUBJECT

FIRST SEMESTER BASI	C CYCLE (FIRST YEAR)
Introduction to Computing	Representation Systems
Algebra	Learning methodology
Mathematical Analysis	
SECOND SEMESTER BASI	C CYCLE (FIRST YEAR)
Imperative Programming	Mathematical Analysis II
Discrete Mathematics	Physics I
FIRST SEMESTER BASI	C CYCLE (SECOND YEAR)
Design and Processing of XML	Computer Logic
Documents	Physics II
Object-Oriented Programming	Chemistry
SECOND SEMESTER BASI	C CYCLE (SECOND YEAR)
Algorithms and Data Structures	Probability and Statistics
Computer Architecture	Physics III

Λ

*

+

11

 Δ Δ

Δ

· · · · ·

•

Database I	Operating Systems
Human-Computer Interaction (HCI)	Software Engineering I
SECOND SEMESTER BASI	C CYCLE (THIRD YEAR)
Communication Protocols	Numerical Methods
Languages Theory, Automata and	General Training I
Compilers	English I
Web Applications Project	
FIRST SEMESTER PROFESSI	ONAL CYCLE (FOURTH YEAR)
Cryptography and Security	Software Engineering II
Database II	Artificial Intelligence Systems
Economics for Engineers	
SECOND SEMESTER PROFESSI	ONAL CYCLE (FOURTH YEAR)
Advanced Numerical Methods	Systems Simulation
Distributed Objects Programming	Law for Engineers
a a	
Computer Project Management	Elective subjects
Computer Project Management FIRST SEMESTER PROFESSI	ONAL CYCLE (FIFTH YEAR)
Computer Project Management FIRST SEMESTER PROFESSI Information Networks	Elective subjects IONAL CYCLE (FIFTH YEAR) Final Project
Computer Project Management FIRST SEMESTER PROFESSI Information Networks SECOND SEMESTER PROFESS	Elective subjects IONAL CYCLE (FIFTH YEAR) Final Project IONAL CYCLE (FIFTH YEAR)
Computer Project Management FIRST SEMESTER PROFESSI Information Networks SECOND SEMESTER PROFESS General Training III	Elective subjects IONAL CYCLE (FIFTH YEAR) Final Project IONAL CYCLE (FIFTH YEAR) English II

| 17

. . .

Mechanical Engineering

What does a Mechanical Engineer do?

Mechanical Engineers transform and adapt nature's energy sources as well as products and processes to move the world and the industries since they know how nature, materials, and technologies available work, and they use such knowledge to create better solutions to the existing options.

Their training allows them to design products, plan and manage machinery maintenance and manufacturing processes, develop and build facilities, assess materials, and optimize energy conversion processes.

COURSE

+

SUBJECT		
FIRST YEAR		
Chemistry I	Chemistry II	
Representation Systems	General Computer Science	
Mathematics I	Mathematics II	
Linear Algebra	Physics I	
General Training I	Learning methodology	
SECOND YEAR		
Mechanical Design	Probability and Statistics	
Introduction to Programming	Mathematics IV	
Mathematics III	Physics III	
Physics II	General Mechanics	
THIRD YEAR		
Electrotechnics	Numerical Methods	
Statics	Physics IV	
Mathematics V	General Electronics	

X

0

+

_

Tensile Testing	Fluid Mechanics	
Thermodynamics	Strength of Materials	
FOURTH YEAR		
Industrial Organization	Industrial Control and Instrumentation	
Environmental and Occupational Safety	Internal Combustion Engines	
Machinery Elements	Polymer Materials	
Physical Metallurgy I	Mechanisms	
Heat Transfer	Management of Mechanical Projects	
Turbomachines	Finite Elements I	
FIFTH YEAR		
Manufacturing Processes I	Law for Engineers	
Pneumatic Hydraulics and PLC	Elective Orientation	
Economics for Engineers	Professional practice	
AUTOMOTIVE ORIENTATION (FIFTH YEAR)		
Electrical Installations	Transmissions in automobiles	
Automotive mechatronics systems	Internal Combustion Engines design	
Automotive structures	Automotive project	
Dynamics in automobiles		
MATERIALS ORIENTATION (FIFTH YEAR)		
Electrical installations	Laboratory of Advanced Materials	
Introduction to steel manufacturing	Manufacturing Processes II	
Mechanics and Physics of steel	Structural Integrity	
Strain and Fracture of Materials	Technology of Composite Materials	
Corrosion and Degradation of Materials	Materials Project	

++

++

PRODUCTION ORIENTATION (FIFTH YEAR)		
Electrical Installations	Manufacturing Processes II	
Refrigeration and Air-Conditioning	Finite Elements II	
Industrial Installations	Industrial Maintenance	
Strain and Fracture of Materials	Mechanics Project	
OTHER REQUIREMENTS		
English I and English II		

X

+

Mechanical Engineering

| 20

.

. .

×

Naval Engineering

х

What does a Naval Engineer do?

Naval Engineers master the technologies and technical tools that facilitate the use and comprehensive exploitation of seas and oceans, focusing on the care of their ecosystems.

Students in naval engineering will be able to design, project, build, repair, and inspect ships of any kind, work or sport boats, and marine devices, among others.

Their training allows them to innovate, optimize and create new business models, staying ahead of the digital world and market demands, and have the skills to adapt to a constantly evolving environment.

COURSE

+

X

SUBJECT	
FIRST YEAR	
Chemistry I	Materials Science I
Representation Systems	General Computer Science
Mathematics I	Mathematics II
Linear Algebra	Physics I
General Training I	Learning methodology
SECOND YEAR	
Mechanical Design	General Mechanics
Introduction to Programming	Mathematics IV
Mathematics III	Physics III
Physics II	Statics
THIRD YEAR	
Electrotechnics	Mathematics V

Naval Engineering

_

+

++

+

+

| 22

. . .

· · · ·

Hydrostatics and Stability	Strength of Materials	
Physics IV	Probability and Statistics	
Materials Science II	English I	
Thermodynamics	Resistance and Propulsion	
Fluid Mechanics		
FOURTH YEAR		
Economics for Engineers	Finite Elements I	
Machinery Elements	Electronics and Instrumentation	
Shipbuilding	Naval Readiness	
Turbomachines	Marine Engines	
Numerical Methods	Law for Engineers	
FIFTH YEAR		
Ship Structures	English II	
Ships Project	Elective subjects- General Training Area	
Marine Propulsion Plants	Elective subjects- Technology area	
Shipyards and Vessels maintenance	Professional practice	
Workboats Project	Shipping Practice	

Chemical Engineering

+

What does a Chemical Engineer do?

Chemical Engineers develop comprehensive projects involving physical, chemical, and biological transformations applied to industrial processes. Their training includes the safety and protection of the environment.

These professionals may work in the planning and development of processes and manufacturing products for the chemical industry and related areas.

SUBJECT		
FIRST YEAR		
Chemistry I	Chemistry II	
Representation Systems	General Computer Science	
Mathematics I	Mathematics II	
Linear Algebra	Physics I	
General Training I	Learning methodology	
SECON	DYEAR	
Introduction to Chemical Engineering	Physics II	
Organic Chemistry I	Organic Chemistry II	
Chemistry Laboratory Work	Probability and Statistics	
Statics and Strength of Materials	Mathematics IV	
Mathematics III	Physics III	
THIR) YEAR	
Biochemistry and Microbiology	Physical Chemistry	
Analytical Chemistry	Electrotechnics	

Х

+ + + +

Transport Phenomena	Numerical Methods	
Thermodynamics	General Mechanics	
Supervised Work I	Spanish	
FOURTH YEAR		
Unit Operations I	Oil industrialization and Economic	
Unit Operations II	Development	
Reactors and Reaction Engineering I	Process Control	
Physical Metallurgy I	Process Control Laboratory	
Law for Engineers	Chemical Industries	
English I	Polymer Materials	
Elective subjects	Economics for Engineers	
Unit Operations III		
FIFTH YEAR		
Industrial Organization	English II	
Conceptual Design Process	Introduction to Environmental	
Plants Project	Engineering	
Supervised Work II	General Training III	
General Training II		

Total course hours: 4320 hours.

+

|24

+

Master in **Data Science**

The **Master in Data Science** provides tools to the professionals to design, prepare, analyze and manage large volumes of data, both structured and unstructured.

It emphasizes the theoretical fundamentals to allow the graduates with the necessary flexibility to adjust to abrupt technological changes and also in the study of case studies and laboratory practices with commercial software and open source.

+

+

COURSE

Module 1: Leveling.

Module 2: Data Science Fundamentals.

Module 3: Data Mining.

Module 4: Data Storage and Online Analytical Processing.

Module 5: Big Data Processing Tools.

Module 6: Data visualization.

Module 7: Machine learning Algorithms and Techniques.

Module 8: Big Data Transformation and Loading, Design, and Application of Extraction Processes. **Module 9:** Geographical and Scientific Data Analysis.

Module 10: Intensive Seminar on Complex Data Advanced Topics.

Thesis workshop.

Thesis workshop II.

Elective I-Graphs Databases

Elective II-Analysis and Proce of Satellite Images

Elective III-Implementation of Automated Learning Applications the Cloud

Elective IV-Neurorobotics

Thesis

Х

Master in Sustainable Energy Development

One of the current main challenges in the world is obtaining universal access to energy and, at the same time, mitigating the impact of its production and consumption as factors contributing to climate change This predicament requires professionals who can **project, design, manage and regulate dynamic energy systems** that bring sustainable and innovative solutions considering the natural resources available and demand.

The **Master in Sustainable Energy Development** provides knowledge and tools to work in planning and energy management areas through a comprehensive approach that combines innovative technologies and development considering the economic, social, and environmental determinants they produce.

COURSE

Introduction to sustainable	Energy equality
energy development	Energy sustainability
Fossil e <mark>nergy reso</mark> urces	Stratagic planning and anong
Conventional Renewable Energy Resources	scenarios
Non-conventiona <mark>l Renew</mark> able	
Energy Resources	
Energy efficiency	
Energy demand	
Energy transport, storage, and distribution	
Energy systems integration	
Disruptive energy technologies	
Energy demand management	
Energy Economics	

+

Master in Strategic and Technological Management

Technology development that determines economics and productivity growth has implications for human labor. Therefore, technology becomes a strategic asset for business management.

The **Master in Strategic and Technological Management** promotes skills and knowledge to transform technological innovation into business innovation.

Professionals will learn to apply technology to create value and sustainable competitive advantages, developing decision-making skills and a systemic vision of the business.

COURSE

+

Fundamentals for business administration

Microeconomics and Macroeconomics Accounting and Costs Management Quantitative Techniques Management Control and Finances Strategic Marketing Commercial Planning Supply Chain and Operations Sustainable Development Global Markets

Strategic management

Systemic thinking for strategic planning Organizations' management and administration Competitive strategies in Argentina Strategic management Organizational culture and Leadership Seminar for Conferences about strategies Seminar on Negotiation skills

Technological Innovation

Innovation and Production Economics Innovation Trends Innovation Policies in Argentina Technological Innovation Management Assessment of Technological projects Management of Technological projects Development of Technology Ventures Trademarks, Patents, and Intellectual Property Seminar on Renewable Energies Seminar on Health Technology Seminar on the Agribusiness Seminar on ICTs Seminar on the Environment Integrated Seminar: Transfer week Seminar on Emotional Intelligence Seminar on Technology Seminar on Analytics Fieldwork Research Methodology Tutoring and Research Activities Thesis research methodology

X

Master in

Energy and Environment ITBA-KIT

This Master trains **leaders in socio-economic and cultural change processes;** related to a **comprehensive improvement in the energy** chain and its links; energy efficiency, care of the environment, energy policies and regulations, and the management of distributed energy and the incorporation of **renewable energy** to smart grids. At the end of the course, graduates will relate technical, environmental, regulatory, and economic concepts; manage the latest tools in calculating, simulating, and designing; put forward and develop efficient, sustainable, and competitive solutions; and work in interdisciplinary and network.

The Master in Energy and Environment is part of the Binational Program to Strengthen Argentine-German Interuniversity Networks. ITBA and Karlsruhe Institute of Technology (KIT) jointly administer this double degree program: ITBA awards a *Magister in Energy and Environment* degree and KIT a *Master in Mechanical Engineering* degree. The course has a CUAA-DAHZ subsidy with coverage for language courses and mobility for professors and students.

COURSE

Advanced engineering fundamentals

Mechanical Design Electronics and Control Fluid Mechanics Modeling and Simulation Thermodynamics and Heat Transfer

Specialization in Renewable Energies Bioenergy

Circular Value Chains Energy Economics Wind Energy Geothermal Energy Hydraulic Energy Solar Energy Hydrogen Energy

Thesis of interest for the business area

KIT Curriculum

Advanced Fundamentals

Fluid Mechanics Thermodynamics and Heat Transfer Mechanical Design Modeling and Simulation Electronics and Control

++

Renewable Energies

Applied Combustion Technology **Applied Mechanics** Automation Technology **Building Simulation** CFD for Power Engineering **Chemical Fuels Combined Cycle Power Plants** Development of Innovative Appliances and Power Efficient Energy Systems and Electric Mobility **Electrical Machines** Energy and Indoor High Performance Buildings **Energy Converting Engines** Energy Technology for Buildings **Engineering Design** Fundamentals of Combustion Fundamentals of Energy Technology Fundamentals of reactor safety

Fusion Technology Geothermal Energy Heat Transfer Hydrogen Technology Integrated Product Development Lightweight Construction Machines and Processes Man - Technology - Organization Materials Science and Engineering Microsystem Technology Nuclear Power Plant Technology Polymer Engineering Simulator Training Combined Cycle Power Plants Technical Ceramics and Powder Materials Technical Thermodynamics and Heat Transfer II Transport and Storage of Chemical **Energy Carriers**

Thesis Work

Х

Master in Environmental Management

The Master in **Environmental Management** focuses on the technical analysis of environmental topics emphasizing the use of specific management tools and the implementation of sustainable policies.

Graduates will be able to analyze environmental topics through multidisciplinary approaches connecting technical knowledge to the management experience in companies and governmental and non-governmental as well as current economic and social issues.

COURSE Mathematics Chemistry Biology Introduction to Social Geological Topics General Module **Ecology Principles** Waste Water and liquid effluent Air quality Soil assessment and remediation Environmental impact evaluation Energy and environment Environmental audits Management systems Environmental education and

communication

Environmental economics and management

Masters' Module

Social Responsibility and Social Impact Research Methodology Environmental Law II Environmental Management in the Oil industry Non-renewable natural resources 1 Biodiversity Non-renewable natural resources 2 Climate change

Master in Management & Analytics

The **Master in Management & Analytics** trains professionals with solid knowledge in management and decision-making in business environments, combined with thorough techniques of acquisition, administration, analysis, and **exploitation of large volumes of data** which allows them to articulate the **business vision** with the technical aspects of data management.

It provides theoretical, technical, and practical knowledge to analyze business contexts and define strategies based on data for decision-making, and **lead innovation processes** with great communication and leadership skills.

COURSE

+

Management Control and Finances Commercial Planning and Data- Driven **Businesses** Strategic management based on Data Innovation Management Organizations' Management and Administration Data Governance Programming for Data Analysis Fundamentals of Analysis and Data Mining Data Storage and Online Analytical Processing Big Data Processing Tools Machine learning Algorithms and Techniques Workshop on Research Methodology and Academic Writing

Elective courses

Organizational Culture and Leadership Systemic Thinking for Strategic Planning Sustainable Development Innovation and Production Economics Global Markets Evaluation of projects Project Management Competitive Strategies in Argentina Supply Chain and Operations Microeconomics and Macroeconomics Accounting and costs Technological Innovation Policies in Argentina Deep Learning

Х

Master in Policy Analysis

Contemporary societies face public problems characterized by their complexity: multiplicity of factors, different temporal frameworks, different territory scales, and high levels of uncertainty, among others. To address such complexity we need to **strengthen the analysis and design of public policies based on evidence, using rigorous analysis technologies and methods** that generate relevant and valid knowledge of the public policy processes.

The **Master in Policy Analysis** provides knowledge and tools to analyze, design, and assess public policies based on several methods and processes of production and analysis of information. The program, characterized by a holistic vision, allows the approach to complex issues considering multiple dimensions.

COURSE

Systemic thinking and public policies Public policy processes Quantitative analysis methods applied to public issues Qualitative analysis methods applied to public issues Design and assessment of public policies Modeling and simulation applied to public issues Science, society, and public policy Economic analysis of public policy Workshop on writing and communication Thesis workshop I

Thesis workshop II

Elective courses

Advanced quantitative analysis methods Data science and public problems Neurosciences and decision-making in public policies Prospective and futures analysis Dialogue processes in public affairs Employment and labor policies Climate change and public policies Energy transitions Cities and public policies Agriculture and sustainability

Master in **Projects and Supply Chain Management**

Due to complex logistics systems and the volatility of the markets, we need trained professionals in the **global supply chain and project management** to evaluate the expansion of a production line, the possible incorporation of new technologies related to production, the feasibility of a project, and its connectivity with the **operations in the national and international supply chain**.

The **Master in Projects and Supply Chain Management** provides unique training in the operations related to **complex logistics systems** and the design of sustainable and innovative solutions based on the available infrastructure, the macroeconomics conditions, and the demand levels.

COURSE

Fundamentals of the supply chain and 4.0

Fundamentals of the Supply Chain Logistic planning Supply chain design Supply chain analytics Supply chain systems and technologies Supply chain simulation

Global operations

+

Global project logistics and physical Integration Operations Management and Supply Production planning and control Transport, Infrastructure, and Maintenance

Management

Integrated Project Management Risk Management in the Supply Chain Complex Logistics Systems Decision-making Global Strategic Management

X

Data Science Specialization

Data Science Specialization provides tools to the professionals to design, prepare, analyze and manage large volumes of data, both structured and unstructured.

It emphasizes the theoretical fundamentals to allow the graduates with the necessary flexibility to adjust to abrupt technological changes and also in the study of case studies and laboratory practices with commercial software and open source.

+

+

COURSE

Module 1: Leveling.

Module 2: Data Science Fundamentals.

Module 3: Data Mining.

Module 4: Data Storage and Online Analytical Processing.

Module 5: Big Data Processing Tools.

Module 6: Data visualization.

Module 7: Machine learning Algorithms and Techniques. Module 8: Big Data Transformation and Loading, Design, and Application of Extraction Processes.

Module 9: Geographical and Scientific Data Analysis.

Module 10: Intensive Seminar on Complex Data Advanced Topics.

Module 11: Comprehensive Final Assignment Workshop.

X

Ph.D.

+

The Ph.D. in Engineering and Software Engineering are intended for training experts in multiple branches of technology. The programs are based on projects managed by ITBA research professors, financed and accredited by the Ministry of Sciences, Technology and Productive Innovation and other state scientific organizations, as well as private companies or ITBA funds. We share objectives and trends with the best international universities where we join the training, I+D+i, and the transference to the productive sector, a true Sabato's Triangle in the university world.

The Ph.D. In Management of Systemic Innovation is aimed to train researchers on innovation with skills to analyze, design, and manage innovative processes and ecosystems. This Program characterizes by a systemic vision that allows the approach to complex issues based on forms of investigation and analysis that consider both technological creativity and the economic, social, environmental, and cultural dimensions of the innovation processes.

Ph.D. in Engineering

Ph.D. in Software Engineering

Ph.D. in Management of System Innovation

 \times

About the School of Innovation

We offer professionals the crucial analytical and technical knowledge and skills to act on future challenges.

Committed to the development of individuals and organizations, the School of Innovation promotes a collaborative, flexible and dynamic environment, capable of responding to technological challenges and new market demands. We offer academic learning experiences with real time results on cutting edge technologies and adaptive management capabilities for students and executives who are eager to expand their personal an professional possibilities with a thought-leading knowledge, culturally immersive and professional network enhancing experience in Buenos Aires.

SUMMER & WINTER PROGRAMS_

Spend a month earning college credits at your home university while enjoying an exciting multicultural Buenos Aires.

+ Data analytics

The program covers the transactional and multidimensional databases, which are fundamental to provide adequate data support to any IT project. It seeks to offerthe necessary knowledge in order to implement database systems that respond to the requirements of the project that aims to impact.

+ <u>Physics ii</u>

The program aims to present the main physical foundations, an introduction to Electricity and Magnetism, Geometric and Physical Optics, and how they formulate the various physical models that explain them, their underlying hypotheses and the limits for their application, which serve as a basis for subsequent courses in this discipline, as well as others that relate to them.

+ Digital manufacturing – Workshop

This workshop was design to learn and experience hands on all the steps prior to the industrialization of a product: modeling, prototyping, defining materials, components and processes.

+ The energy challenge – Zero emissions by 2050

The program provides discussions on the key factors and issues associated with the energy transition required to reach zero GHG emissions. The four energy value chains: power generation, transportation fuels, industrial energy and residential energy will be analyzed and discussed. After finishing the course, students will have the tools and knowledge to professionally use the main information sources, understand the policies, technical and economic issues, challenges and opportunities of the road to zero emissions with focus on renewable energies.

+ Operation research & simulation

The program is designed to provide students with theoretical and practical tools for solving operations research and optimization problems related to industrial engineering. Beginning with mathematical modeling and evolving to simulation, this program gives the basics to understand the structure of systems and to identify the opportunities for optimization.

× ||

ONLINE PROGRAMS

Training experiences in cutting edge technologies and adaptive management for professionals from around the world. Offers flexible access to digital learning courses from our course catalogue which are developed and taught by ITBA Instructors.

CUSTOMIZED PROGRAMS

Targeted and customized learning experiences for corporate and educative organizations around the world. Unique programs specially developed to address our partners' goals and needs.

INTENSIVE PROGRAMS

For Executives from around the world who are eager to expand their personal and professional horizons with an academic, cultural and network-enhancing experience in Buenos Aires.

Join us for one of our week-long intensive executive programs and benefit from what Argentina has to offer.

+ information

TRA

CONTACT:

study@itba.edu.ar innovacion.itba.edu.ar

EVOLUCIÓN CONTINUA

Instituto Tecnológico de Buenos Aires

Department of International Relations:

relacionesinternacionales@itba.edu.ar International Relations Director: ecannata@itba.edu.ar Coordinator for International Cooperation: agiordano@itba.edu.ar International Mobility Analyst: mhammar@itba.edu.ar ITBA Rectorado. Iguazú 341, C1437, Buenos Aires, Argentina.